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Repeller Structure in a Hierarchical Model. 
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The repeller associated with the renormalization dynamics of the spectral 
problem of a hierarchical tight-binding Schr6dinger equation is studied. 
Analysis of escaping regions and of stable and unstable manifolds provide com- 
plementary descriptions of the recurrent set, whose structure undergoes relevant 
changes when the growth rate R of the potential barriers is modified. The mini- 
mal region containing the repeller is determined and the mechanism originating 
a Cantor set structure along the unstable manifold is revealed. The repeller is 
continuous along the stable manifold for R < 2. Finally, we show the existence 
of a pointlike component of the spectrum located at its upper extremum for 
R < 1 and we present the associated wavefunctions. 

KEY WORDS: Strange repellers; localization; Schr6dinger operator; 
hierarchical structures; renormalization group. 

1. I N T R O D U C T I O N  

Fibonacci  chains and  hierarchical one-d imens ional  discrete Schr6dinger 

operators have been in t roduced by various authors  (1 6) as toy models for 

electronic conduc t ion  in etherostructures and  superlattices where 
anomalous  diffusive behaviors  are expected. (7 9) These models have been 

extensively studied both  numerical ly  and  analytically,  showing m a n y  
c o m m o n  interest ing features. This is not  surprising if one considers that  the 
spectral problem is exactly solvable by renormal iza t ion  group3 m~13) The 

general properties of these spectra can be summarized as follows: 
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(i) The spectrum is a Cantor set./12"13) 

(ii) Scaling and measure-theoretic properties can be derived by 
renormalization group arguments. 

(iii) A singular continuous component exists for some values of the 
parameters, where wavefunctions show a self-similar critical structure. (1'2'14) 

Less is known on the aspects quoted in (ii) and (iii) for the hierarchi- 
cal models. Some results were obtained about scaling laws of the density of 
states for specific components of the spectrum. (5) The self-similar properties 
of the wavefunctions have also been investigated numerically. (3"6'15) 
Anyway, a complete quantitative description of the scaling laws deriving 
from the renormalization dynamics was still lacking. 

In this paper we make a first step toward such a quantitative descrip- 
tion by analyzing the topological structure of the recurrent set associated 
with the renormalization group transformation. This is done by deter- 
mining the escaping regions and the invariant manifolds. We find that 
the recurrent set is unstable, i.e., a repeller, continuous along its stable 
manifold in a suitable parameter range. 

In Section 2 we define the model and briefly review the known results. 
In the first part of Section 3 we discuss the structure of the repeller by 
characterizing its complement: the regions which escape to infinity. In the 
second part we study the structure of the repeller along the stable manifold. 
In Section 4 we study the existence of localized states, connecting them 
with the intersection of the stable manifold of suitable fixed points. 
Section 5 is devoted to some concluding remarks. 

Metric and multifractal properties will be treated in Part II. (16) 

2. THE M O D E L  

The discrete one-dimensional Schr6dinger operator H, first introduced 
in ref. 5, is defined as follows: 

(HO)(i) = - - [ 0 ( i +  1 ) -  2~( i )+  0(i--  1)] + V(i) tp(i) (2.1) 

where 

V(i) = 2f(ord(i)) (2.2) 

Here i labels the lattice sites, 2 is a real parameter representing the strength 
of the potential, f is a real-valued function, and ord(i) is the largest non- 
negative integer j such that 2 j is a divisor of i. In order to guarantee a 
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simple form of the renormalization transformation, f has been defined as 
follows: 

R j -  1 
f ( J )  = R ~ -  I (2.3) 

where R is chosen to be a positive real parameter. It has been shown that 
the semi-infinite chain spectral problem is equivalent to the doubly infinite 
one, if the potential in the origin is defined as follows(12~: 

V(0 )=2  lim f ( j ) =  ~2/(1 
~ e ~ ~ R <  1 

j ~  (0% R~>I 

The solution of the eigenvalue problem for the operator defined in (1.1), 
H ~ ( i )  =E~( i ) ,  can be approached by applying a renormalization group 
transformation based on a decimation technique. (5)'5 For  the potential 
given in (2.2) and (2.3) this procedure leads to the recursive relations 

xn+ l = 2 -  x~ + x n y ,  
(2.4) 

Yn + 1 = - - R x n  Yn 

with initial conditions Xo = E - 2  and Yo = 2, where x~ +1 and y~ +l repre- 
sent the renormalized energy and potential strength, respectively (see ref. 5 
for details). 

Equation (2.4) has three fixed points in the (x, y) plane, namely 

F1 = ( - 2 ,  0) 

F2 = (1, 0) (2.5) 

F 3  = ( - 1/R, ( 2 R  2 + R -- 1 ) /R)  

Stability analysis shows that F1 and F2 possess an unstable manifold along 
the x axis and a stable (unstable) manifold transverse to the x axis for 
R < 1/2 (R > 1/2) and R < 1 (R > 1), respectively. The fixed point F3 is an 
unstable focus up to R = 1/2, where it coincides with the fixed point F1, 
then becoming a saddle for R > 1/2. A complete study of the dynamics (2.4) 
needs first the characterization of its recurrent set. As usual, when dealing 
with renormalization group transformations, we expect the presence of a 
repeller which can be identified as the intersection of a stable and an 
unstable manifold. This is indeed the case, as it will become clear in the 
following sections. 

5 This method has been shown in ref. 12 to be equivalent to the determination of the recursive 
relations for the traces of the transfer matrices. 
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3. E S C A P I N G  R E G I O N S  A N D  M A N I F O L D S  

As a first goal, we want to study the geometrical features of the set of 
points recurrent under map (2.4). As this turns out to be an unstable set, 
it is by definition a repeller. Two main families of strange repellers have 
been so far identified: (a) Cartesian products of two Cantor  sets (as it is 
the case of the renormalization group transformation associated with 
Fibonacci chains (1'2'1~ typical of invertible 2d maps, which occur when a 
Smale horseshoe is generated by the dynamics; (b)fully unstable repellers 
occurring in noninvertible maps like Julia sets which can be easily 
generated by iterating backward the map and choosing randomly the 
preimage. (17) In the case of map (2.4), we expect a "mixture" of the two 
cases, because, as, we will see in the following, the dynamics is not fully 
unstable and the map is noninvertible. In fact, the inverse of map (2.4) 
reads 

xn_ 1 = ___(2 - - x , , - - y n / R )  1/2 

Y,, 1 = - y , , / ( R x , , _  1) 
(3.1) 

A noninvertible map, which is often only approximately related to equa- 
tions describing physical systems, is here a rigorous consequence of the 
renormalization group, which, being a semigroup, contains in a natural 
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Fig. 1. Escaping region of map (2.4) for R = 0.3 (a), 0.7 (b), and 1.5 (c). The shaded triangles 
indicate the noninvertibility region. The piecewise straight lines represent the border of the 
first-order approximation L 0 of the escaping region. The remaining curves represent the 
invariant manifolds of the fixed points F1 and F3. 
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Fig. 1. (Continued) 

way a preferred direction. It is easily seen that in the region (shaded in 
Fig. 1 ) + 

y > R(2 - x) (3.2) 

no preimage exists, so that we cannot find points of the repeller there. In 
the remaining half-plain, instead, two preimages PI and P2 exist, related by 
the symmetry operation P2 = S(PI), where S is defined by 

S(x, y)= (-x ,  -y)  (3.3) 
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Moreover, we observe that the x axis is left invariant by map (2.4) for any 
value of R, and the dynamics on it is the same as the one exhibited by the 
logistic map at the Ulam point. As a consequence, the interval on the x 
axis delimited by F1 and by (2, 0) belongs to the repeller. The remaining 
nontrivial part of the repeller will be characterized by a standard proce- 
dure. The structure along the stable and unstable manifolds will be 
investigated looking for the regions which escape (either diverging to 
infinity, or converging to some attractor) backward and forward from the 
repeller, respectively. The repeller turns out to be the intersection of such 
manifolds. The analysis of escaping regions was already performed in 
ref. 12 to identify the stable manifold. 

It will become clear in the following that three qualitatively different 
regimes are detected by varying R, namely: 

(a) R > 1, where the x axis is unstable to transverse perturbations, so 
that, being fully unstable, it cannot contribute to the scaling properties of 
the spectrum of the Schradinger operator [apart from the fixed point F1, 
which always belongs to the stable manifold because of another special 
feature of map (1.1): the whole y axis is mapped, in one iterate, onto the 
point (2, 0), and then onto F1]. 

(b) 1/2 < R < 1, where all the periodic orbits of the logistic map, to 
which map (2.4) reduces for y = 0, are stable to transverse perturbations 
(except for F1), and a nontrivial recurrent set is present outside the x axis. 

(c) 0 < R < 1/2, where also F1 becomes a saddle point, whereas the 
recurrent set outside the x axis reduces to the fully unstable fixed point F3. 

3.1. The Structure of the Stable Manifold 

In order to describe the recurrent set, we first identify a region Lo 
which we prove to escape to infinity, and then we determine its preimages 
(whenever they exist). For the sake of clarity, it is useful to identify the 
region Lo through the union of the two partially overlapping subregions 
(see Fig. 1) 

LI -= {(x0, Yo) I Xo< -2 ,  y0>0}  

L 2 -  {(Xo, Yo) lXo< --1/R, y o > ( 1 - R ) x o + 2 R }  

These sets were already studied in ref. 12. To be self-contained, it is useful 
to rephrase the results contained in Lemmas 3 and 5 of ref. 12 in our 
notations. 

P ropos i t i on  1. Any point in L 0 = L I w L 2  is asymptotically 
mapped to infinity by (2.4). 
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ProoL In order to prove that any point in L~ is mapped to infinity, 
it is convenient to introduce the variable a ~ = x k / 2  and rewrite the 
recursion (2.4), by eliminating y~, 

2 a 2a~ a k + x =  1 - - 2 a ~ - - 2 R a k (  k - -  1 + ~) 

By imposing the inequalities 

ak_ 1 < - 1 ,  ak < - a 2 _ i  

(3.4) 

(3.5) 

one obtains from Eq. (3.4) 

ak < -1 ,  2 
ak + 1 < --ak 

This shows, by induction, that ak -~ - oo for k -+ + co. From the definition 
of L1, a l <  1 - 2 a ~  and a 0 < - 1 ,  so that conditions (3.5) are fulfilled 
already for k = 1, and the first part of the proposition is proved. 

The proof that any point in L2 escapes to infinity is analogous. By 
introducing the variable bk = - -Rxk  one can rewrite Eq. (2.4) in the form 

bk + 1  = 62 "~ 2R(bk - 1 ) + bk(b~ - b~_ l ) /R 

If the conditions 

b k > 1, 2 b k > b ~ _ l  

are satisfied, then, from Eq. (3.6), 

b~+l > 1, 

(3.6) 

Once again this proves by induction that b k ~  +oo for k ~  +o% the 
region L2 corresponding to the set where conditions (3.7) are fulfilled for 
k = 0 .  Q.E.D. 

Our estimate of the escaping region can be widened by iterating back- 
ward the border of Lo, and retaining the x < 0 branch only. By repeating 
indefinitely this procedure, we enlarge L o up to reach a region L delimited 
by an invariant curve. Since the fixed points F1 and F3 belong to the 
border of L, it is compelling to conjecture that such an invariant curve is 
composed of invariant manifolds of the two fixed points. More precisely, 
accurate numerical calculations (based on a standard series expansion) 
indicate that the asymptotic invariant curve is composed of (i)the stable 
manifold of the upper fixed point and the lowest branch of the unstable 
manifold of the lower fixed point for R < 1; and (ii) the stable manifold of 
F3 and the half straight line ( y = 0 ,  x <  - 2 )  for R >  1. This is because, for 

bk+l >b~ (3.7) 
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R > 1, the region L is limited from below by the straight line y = 0, which 
is an invariant manifold of the dynamics. As a consequence, the asymptotic 
preimage of such a line coincides with itself, thus defining the border of the 
escaping region. It is important to observe that, for any R > 0, the stable 
manifold of the upper fixed point reaches the lower fixed point. The reason 
is that the latter is stable under the action of inverse map (3.1). 

Because of the symmetry existing between the preimages of map (2.4), 
all points in region D =  {(x, Y) l ( - x ,  - y ) e L }  escape to infinity as well. 
In particular, by applying the operator S to the border of L, we obtain the 
border (?D of D (see Fig. 2). Now, by further determining the whole 
cascade of all preimages of D (whenever they exist), we generate an infinite 
family of escaping regions. Starting from the region D itself, we note that 
only the subset bounded from above by the straight line y = R ( 2 - x )  is 
invertible. By iterating backward this sector, which touches the x axis in 
the point (2, 0), we expect to find--from the invariance of the x axis--two 
distinct regions still touching such an axis in two symmetric points. 
Because of the special nature of (2, 0), the two points coincide with the 
center of symmetry (the origin), and moreover, the whole y axis, entirely 
mapped onto (2, 0), contributes to define the border. As a result, the two 
backward images of D identify a new escaping region S~ delimited by the 
straight line x = 0  and by (~D) 1 (where we denote by C i the ith 
preimage of a curve C). 

We can now apply the same procedure to the invertible subset of $1. 
At variance with the previous case, a single preimage defines p e r  s e a  sector 
(namely, $2 (1) and S~2)). The reason is that the intersection of S~ with the 
x axis (the origin) has now two distinct preimages). One of the two borders 
of $2 (i) (i = 1, 2) is simply obtained by taking the preimage of the y axis, 

2 
y =  x - -  (3.8) 

x 

It is again independent of R, but its further preimages no longer exhibit 
this property. 

Each sector can be again iterated backward giving rise to two new 
sectors, all of them intercepting the x axis in preimages of suitable order 
of the maximum of the logistic map, namely in _+(2+ (2 + ...)1/2)1/2. As 
a result, a sequence of nonoverlapping sectors S(m ~ is obtained. It seems 
reasonable to conjecture that they exhaust all the regions which escape 
to infinity, so that their union represents the complement to the stable 
manifold of the strange repeller. 

A careful numerical check of this hypothesis has been performed by 
means of a direct numerical simulation of the repeller structure. Following 
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Preimages of the escaping region L for R = 0.7 (a) and 1.5 (b) (shaded). 

ref. 18, we start with a generic segment, transverse to the stable manifold 
of the repeller. By varying the initial condition on the segment, we deter- 
mine a point P0 lying within a distance 6rain from the stable manifold. This 
is done by checking whether the images of Po remain inside a finite region 
at least for a number n = log 3min/~ + of iterates (where ,~.+ is the positive 
Lyapunov exponent). Then, the point Po is iterated until its distance from 
the stable manifold becomes larger than a preassigned accuracy 6r~ax. 
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When this is the case, the accuracy is again increased by repeating 
the initial procedure. The outcome of a simulation performed over 10 4 
iterates is presented in Fig. 3. We observe a Cantor-like structure in 
correspondence to the sectors identified by our previous approach, thus 
confirming that the complement to the union of all sectors coincides with 
the stable manifold of the repeller. 

3.2. The Structure  of the Unstable Man i fo ld  

The investigation of the structure of the unstable manifold is more 
complex, due to the noninvertibility of map (2.4). However, we can first 
prove that some regions cannot belong to the repeller. Let us observe that, 
by direct inspection of Eqs. (3.1), the (x, y) plane can be partitioned into 
three regions separated by the two parallel straight lines ( i ) y =  R ( 2 - x ) ,  
(ii) y = - R ( 2  + x): 

c1 = (x, y I y < - R ( 2  + x)) 

c2 = (x, y I - R ( 2  + x) < y < R(2 - x)) (3.9) 

ca  = (x, y I y > R(2 - x)) 

All points in C 3 have no preimage in the real plane, as already shown at 
the beginning of this section. It is also straightforward to observe that all 

4. 

2. 
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y F3 
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. :  
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Fig. 3. Direct numerical simulation of the repeller for R = 1.5, with its contour  as determined 
from the invariant manifold o fF3 .  
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points in C2 have both their preimages in C2, while the region C1 is 
simultaneously mapped backward onto the sector A=(x, y lx<-2,  
y < 0 ) ,  which is a subset of C1 itself, and onto its symmetric S(A) lying 
inside C3. 

We can prove the following result. 

k e m m a  1. The sector A is attracted by the negative x component 
of map (3.1) toward the fixed point F1, for R >  1/2. 

Proof. First, recall that F1 is a fully stable fixed point of (3.1) for 
R>1/2 .  Let us consider the square ~ q = ( X , y ]  - 2 - q < x < - 2 ,  
- q  < y < 0) c A. Its preimage in C1 lies into a closed region f2 bounded by 
the four following curvilinear segments: 

(i) y = 0 ,  

(ii) y = x - - -  

- ( 4 -  q) t/2 < x <  - 2  

1 i/2 4 + q  _ 4 + q  ( I + R )  <x<_(4+q)l/2 
7 '  

q -- 4 q ( I + R )  < x < - -  4 +  (iii) Y=R---s +-R 

(iv) y = x - -  - 4 +  < x < - 2  
X 

Note that all these are monotonic functions in A. As a consequence, the 
region f2 is contained in a new square ~ q, whose side length is 

q 
q'=max{F(q)=[4+q(l+R)-2]l/2, G(q)=R(4+q/R)l/2} (3.10) 

The stable fixed point of (3.10) is q = 0 for R > 1/2, i.e., any square sector 
in A is eventually mapped backward to F1. Q.E.D. 

For R <  1/2 the mapping (3.10) has the stable fixed point q*=  
1/R-4R, i.e., any square sector A with side length q > q* contracts into 
the square sector ~ q., which contains F3. This implies that ~q .  contains 
a finite portion of L2. It is reasonable to conjecture that the segment 
( x = - 1 / R ,  O<y<(2R2+R - 1)/R) will be mapped backward in C1 by 
(3.1) to the invariant curve joining F1 with F3. The two lower vertices of 
~q .  can be proved to be mapped in F3. As a consequence, ~q .  will 
contract to the invariant line joining F1 to F3. Therefore, if no periodic 
orbit exists on this invariant curve, the sector A of Lemma 1 contracts to 
F3 for R < 1/2. 

We are now in the position to prove the following. 

822/65/b2-5 
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T h e o r e m .  The points in region F = ( T n C 2 ) ,  with ? being the 
concave region outside the parabola 

1 [  I + R  )2 
y+ R2=~(y~R--+ Rx (3.11) 

are mapped by (3.1) for R >  1/2 either to the fixed point F1 or in C3, 
where they can no longer be iterated. Thus, all the points in F except F1 
do not belong to the repeller. 

ProoL By construction, all points in F are mapped backward either 
in a subset of C1 or in C3 [since parabola (3.11) is the image of the two 
straight lines delimiting C1 and C3]. The preimages of points in C1, in 
turn, belong to the sector A and to C3. Then, from Lemma t, all points in 
A are attracted by F1, while their symmetric preimages lie in C3. Q.E.D. 

According to the comments following Lemma 1, an analogous result 
should hold also for R < 1/2, replacing F1 with F3, although we have not 
proved it. 

As the repeller is, by definition, an invariant set, it must be located in 
C2 inside the convex region delimited by parabola (3.11) (see Fig. 4). This 
region can be further refined according to the following reasoning. So far, 
we have excluded those points whose two preimages are attracted by F1, 

2. 

Y 

0. 

-:L 

-2. I I 

X 
-2. O. 2. 

Fig. 4. Escaping regions under the inverse map (3.1) for R=0.7. The two parallel straight 
lines 11 and 12 allow one to identify the regions C1, C2, and C 3 defined by Eq. (3.9). Parabola 
PI is the preimage of 11, /2, while P2 is its symmetric under transformation (3.3). The 
remaining curve represents the unstable manifold of F3. 
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and lie in C3, respectively. Now, we can add those points whose two 
preimages are attracted by F1. To do that, we must first introduce the 
parabola symmetric to (3.11), under transformation (3.3). The points 
belonging simultaneously to the concave regions outside both parabolas 
(see Fig. 4) fulfill the above requests. As a consequence, by iterating 
forward the upper part of parabola (3.11), we obtain a refinement of the 
region containing the repeller. It is now obvious that the procedure can be 
repeated, by iterating the upper part of the curve which delimits the region. 
Asymptotically, we expect a convergence toward an invariant manifold. 
This is confirmed by numerical calculations (see Figs. 1, 3, and 4), which 
suggest that such an invariant manifold is nothing but a part of the 
unstable manifold of the fixed point F3. 

Summarizing these results, we can say that the nontrivial part of the 
repeller is confined inside a finite region So delimited, for R > 1, by the 
lower branch of the stable manifold of F3 (connecting F3 to F1) and by 
the branch of the unstable manifold of F3 which connects again F3 to F1, 
passing through (2, 0). In fact, this region is also delimited by the sym- 
metric under (3.3) of the stable manifold of F3 (see Fig. 3). Since for 
R = 1/2, F1 coincides with F3, such a region disappears and it is therefore 
natural to conjecture that the recurrent set outside the x axis reduces to the 
fixed point F3 for 0 < R < 1/2. 

For R > 2 the region So containing the repeller is further restricted by 
a new mechanism originated by a qualitative change of the unstable 
manifold of F1. For R > 1, the existence of points of the repeller arbitrarily 
close to the x axis depends on the dynamical evolution close to F1. In fact, 
the x axis is fully unstable, and the only points reinjected close to it are 
those falling close to the y axis. More precisely, the segment delimited by 
the points (0, y') and (& f)  (with 6 ~  1) is iterated in two steps onto 
the segment having one extremum in F1 and angular coefficient 

= - R 2 / ( 2  + R), independent of y' and f. The multipliers of map (2.4) at 
F1 are 4 and 2R, the corresponding eigenvectors being (1,0) and 
( 1 , 2 - R ) .  ~3'5) Since / / < 2 - R ,  such a segment lies below the unstable 
manifold T of F1 transverse to the x axis. The points of the repeller lying 
closer to the x axis are necessarily obtained by iterating forward the points 
of the above segment. As long as a linear analysis applies, the forward 
images remain below T, since the second multiplier is larger than 0. There- 
fore, all the points belonging to the region z delimited by the first closed 
loop of T around (0,0) do not belong to the repeller (see Fig. 5). 
Moreover, as T is more expanding than the other unstable manifold, 
points of the repeller infinitesimally close to F1 come arbitrarily near T. 
Accordingly, T represents a border of the repeller, which is thus contained 
in X1 = S 0 \ ~ .  
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Fig. 5. 
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Unstable manifolds of the fixed points F1 and F3 for R = 2.4 together with the 
repeller obtained by direct numerical simulation. 

Further refinements of the bounds of the repeller are obtained by 
forward iteration of Z" 1, which is made of two bands lying on opposite 
sides of the x axis (see Fig. 5). The iteration of each band gives rise to two 
new bands lying respectively above and below the x axis. If the union of 
the four bands contains 221, no more gaps are opened and the repeller is 
continuous along the stable manifold. Otherwise two cases are given: 

(a) The four bands do not overlap [apart  from F1 and (2, 0)] and 
a perfectly binary Cantor structure is generated along the stable manifold. 
One can in fact easily prove that no new overlaps are created at the 
following steps. The dynamics on the repeller is completely invertible, 
although the map is globally noninvertibte. 

(b) The four bands partly overlap, thus leading to a more intricate 
Cantor-like structure along the stable manifold. 

In Fig. 5 we show an example of case (b) for R = 2.4, when only one 
of the two gaps which could be opened at the next hierarchical step is in 
fact present. Case (a) occurs for larger values of R, while for R > 2 we never 
observe continuity along the stable manifold. 

Below R = 2 the x axis is the most expanding manifold of F1 and the 
reinjected points come arbitrarily close to it. Therefore the region 
vanishes and there is no mechanism able to generate a fractal structure 
along the stable manifold. For  1 < R < 2 the repeller, being continuous and 
Cantor along the stable and unstable manifold, respectively, has the 
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topological structure of a typical strange attractor iterated backward in 
time. 

A detailed analysis of the skeleton of the repeller based on the iden- 
tification of the periodic orbits of (2.4) will be presented in Part II. (16) 

Another way of controlling the structure of the repeller close to the x 
axis is by estimating the fractal dimension D s along the stable manifold 
near the x axis. Following the same reasoning that led us to characterize 
the reinjection mechanism around F1, we first observe that a point at a 
distance 6 from the y axis is mapped at a distance c5 from F1. To detect 
the singular structure close to the x axis one has to iterate further this 
point until its distance from F1 is (9(1). From the knowledge of the 
multipliers at F1, one derives that the number of required iterates is 

log 6 
n = - - -  (3.12) 

log 4 

The corresponding distance s from the x axis is related to c5 by 

log s log(2/R) 

log 6 log 4 
(3.13) 

The scaling behavior close to the y axis given by the typical square-root 
law at the band edge p = 61/2, where p is the measure of points within a 
distance 6 from the y axis. Therefore, from Eq. (3.13) we have 

Ds = log p log 2 
log s - log(2/R) (3.14) 

For  R--* 2_,  D7~ oo, in agreement with the previous findings that the 
repeller does not reach the x axis for R > 2. For  1 < R < 2, D F > 1, implying 
a low density near the x axis as shown in Fig. 3. Finally, for R < 1, D s < 1, 
implying a concentration of points around the x axis. This latter fact is a 
consequence of the stability of the x axis with respect to transverse pertur- 
bations. 

4. D Y N A M I C A L  VERSUS SPECTRAL PROPERTIES 

In ref. 12 it was proved that the spectrum of model (2.1) is purely 
singular continuous for R ~> 1, while for R < 1 it is continuous, apart from 
the possible existence of a pointlike component associated with unbounded 
sequences {xn} satisfying the conditions 

1 
Xn<--'-R, Xn • - R X 2  1' Vn>~no (4.1) 
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with xn monotonously approaching - ~ and no any fixed integer. In ref. 12 
no conclusion was reached about the existence of this component of the 
spectrum. In this section we discuss this problem by analyzing Eqs. (2.4) 
and (3.1). Let us first observe that conditions (4.1) define a region H in the 
(x, y) plane bounded by the curves 

2 
BI: y = (1 - R ) x - -  (4 .2 )  

X 

2 R +  1 
B 2 :  y =  x R x  (4.3) 

Our aim is to identify a region H a  in the (x, y) plane such that {xn} 
diverges monotonously to - o% remaining inside H for each n ~> 1 (where 
it is convenient to choose no = 1, without any loss of generality). In fact, 
once such a region is found, it is sufficient to take all its preimages to 
obtain all the orbits which satisfy inequalities (4.1). By definition, this 
region is the intersection of all the preimages of H according to (3.1), 

H ~  = ~ H i (4.4) 
i = 0  

where Hi is the ith preimage of H. We address here the question of whether 
H~  is empty or not. 

As a preliminary, let us prove the following. 

L e m m a  2. The left preimage according to map (3.1) of any curve 

y = c~x §  (4.5) 

with f ( x )  ~ 0 when x ~ -oo  converges to 

y = (1 - R ) x  + f ( x )  (4.6) 

where f ( x )  has the same asymptotic property of f ( x ) .  

Proof. From the inverse mapping (3.1), one obtains that the left 
preimage of y = c~x + f ( x )  is given by the curve 

y = ~'x + f ' ( x )  

where f ' ( x ) ~  0 for x-~ - ~ ,  and 

0~ t m  
c~+R 
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This recursive relation has a stable fixed point in ~ = e * =  ( 1 -  R). There- 
fore any curve of the form (4.5), restricted to the invertibility region defined 
in (3.2), converges to a curve of the same form with an asymptote of slope 
e*, and the Lemma is proved. Q.E.D. 

Let us observe now that both BI and B 2 belong to the family of curves 
(4.5) and, moreover, they intersect each other in the fixed point F3. It is 
natural to distinguish between two cases: 

(i) 0 < R < l / 2 ,  (ii) 1 /2~<R<l  

Case (i). F3 is fully unstable and no other fixed point of (2.4) lies 
inside H. Local stability analysis shows that the most unstable eigendirec- 
tion of F3 points inside H. Combining this observation with Lemma 2, one 
deduces that the preimages of both B1 and B 2 converge to the branch of 
the unstable manifold of F3 contained inside H and, reasonably, this con- 
vergence is monotonous. As a consequence, one can state the following: 

C o n j e c t u r e  1. H a coincides with the union of the branch of the 
unstable manifold of F3 contained inside H and its symmetric under trans- 
formation (3.3). 

This symmetric curve has to be included, because it, too, is a preimage 
of the manifold (so, technically, it belongs to the invariant manifold). 
However, no further points have to be added, as it has no preimage, lying 
in the noninvertibility region defined by (3.2). 

In order to relate this result to the spectral properties of the associated 
Schr6dinger tight-binding problem, one has to identify the intersections of 
H a  with the set of initial conditions y = 2, x = E -  2. This implies that for 
any fixed positive 2, the pointlike component of the spectrum exists if and 
only if 2 is larger than the opposite of the y coordinate of F3, that is, 

2 > 1_ _ 1 - 2R (4.7) 
R 

and it corresponds to the highest excited state of the spectrum. 

Case (ii). The region H now contains also the fully unstable fixed 
point F1, while F3 is a saddle (see Fig. lb). In this case the preimages of 
B 1 and B2 tend monotonously to the branch of the unstable manifold of F1 
which diverges to - o e  and to the branch of the stable manifold of F3 
joining this fixed point with F1. On the other hand, the sequences {xn} 
that may eventually diverge to - m  according to (4.1) are those whose 
initial condition onto lies the unstable branch of F1 fully contained inside H. 
Therefore one can put forward the following: 
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Conjecture 2. Ho~ coincides with the union of the branch of the 
unstable manifold of F1 contained inside H and its symmetric under (3.3). 

At variance with case (i), now the pointlike component located at the 
highest excited state of the spectrum is present for any positive 2. 

Let us stress that the results of this section on the existence of a 
pointlike component in the spectrum rely on the conjectures. Their 

( a )  2 

- 1  

( b )  

- 2  

0 5 0  1 0 0  

0 

-b- 

�9 t a ~ t  I 

i 
- 3 0  . . . . . . . . . .  - . . . . . . . . .  

- 2 0 0  - 1 0 0  0 1 0 0  2 0 0  

Fig. 6. Wavefunctions of the Schr6dinger operator (2.1) of the most  excited state, for 
R = 0.3. (a) The periodic approximation of hierarchical order n = 7; (b) tile results for n = 7 
(dashed curve) and n = 8 (solid curve) are compared, by shifting the peak of the wavefunction 
to the same site n = 0. 
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correctness depends in turn on the monotonous convergence to H~ .  Let us 
also observe that the relation between the pointlike component and a 
suitable part of the unstable manifold allows for a direct location of this 
spectral component. 

To have a confirmation of our conclusions, we have evaluated the 
wavefunction of the Schr6dinger operator (1.1) for different periodic 
approximations. More precisely, by exploiting the renormalization trans- 
formations (see also ref. 5) we have first determined the energy of the 
rightmost band edge of a generic order i of hierarchical approximation. The 
further substitution in Eq. (2.1) allowed us to determine the initial condi- 
tions ~p(1), ~(2) such that ~(2n+l)=~b(1) ,  ~ ( 2 n + 2 ) = ~ ( 2 ) ,  and the 
wavefunction is normalized. 

In Fig. 6 we report the results for R = 0.3 and two 2 values, 1 and 2.5, 
below and above the critical value 2 c -= 26/15 [-as from Eq. (4.7)], respec- 
tively. In the first case the wavefunction is clearly an extended oscillating 
state. In the second case, the plot of the logarithm of the absolute value of 

indicates an exponential localization. The peak coincides with the posi- 
tion of the highest barrier i = 2 n. To compare the curves resulting from two 
different approximations (namely n = 7 and 8), we displaced the peaks to 
the same site n = 0. The extremely good agreement between the two curves 
around the maximum indicates that the result is already asymptotic. 
A numerical fit of the slope gives a localization length lc -~ 5. 

6. C O N C L U S I O N S  A N D  P E R S P E C T I V E S  

We have studied the structure of the chaotic repeller of map (2.4) by 
identifying regions of the (x, y) plane which escape to infinity. Complemen- 
tary information has been obtained by analyzing the structure of the 
invariant manifolds. Both methods allow the determination of the minimal 
region containing the repeller, which turns out to be fractal along the 
unstable manifold. The structure along the stable manifold depends on R; 
we were able to prove its continuity for R < 2 ,  while for R > 2  more 
intricate Cantor-like structures are present. 

Moreover, the analysis of the renormalization map with tools of 
dynamical system theory leads to the derivation of interesting results con- 
cerning the associated spectral problem. For instance, we have been able to 
give a positive answer to the question left open in ref. 12 about the exist- 
ence of a pointlike component in the spectrum of the hierarchical model 
studied in this paper. We have also confirmed the conjecture raised in 
ref. 12 about the location of such a component, providing a direct recipe 
for its determination. Another peculiarity of this model is the coexistence of 
localized and extended wavefunctions in different parts of the spectrum for 
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fixed values of the parameters R and 2. Recently, it has been proven that 
unbounded, rapidly growing potentials yield localized spectra. ~19) Our 
potential satisfies the conditions of the theorems proved in ref. 19 for R > 1. 
This means that the existence of a singular continuous spectrum is peculiar 
of Dirichlet boundary conditions and that a more generic initial condition 
d la Kotani leads to a point spectrum. It would be nice to have some 
results on the stability with respect to initial conditions also for the R < 1 
case, using the methods of ref. 19. 

The contents of this paper almost exhaust the discussion on the 
topological aspects associated with this hierarchical problem. Further infor- 
mation can be extracted from the knowledge of periodic orbits, whose 
determination allows one in principle to solve the problem of the scaling 
properties of the spectrum. The second part of this work/16) will be entirely 
devoted to the problems of the invariant measure and of multifractal 
scaling. 
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